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A vortex method in three dimensions is simplified through the
removal of small folds ("hairpins”). The procedure is justified as a
real-space renormalization, within a framework provided by recent
results on the statistical equilibria of vortex filaments. An application to
a vortex ring is carried out. Applications to other numerical methods as
well as open guestions are discussed. € 1893 Academic Press, Inc.

INTRODUCTION

Three-dimensional inviscid or high-Reynolds number
flow is difficult to compute. Ever smaller scales of motion
are excited, and all scales are coupled. In most cases, it is
impractical to resolve all scales; without a reasonable treat-
ment of the smali scales, the accuracy of the calculation
soon deteriorates. One would like some way of removing
small scales without harming the large scales. In other
contexts, such removal can be effected through renormaliza-
tion.

Recent statistical mechanical analyses of vortex motion
[11,13] provide a justification for the removal of small
scales through the removal of “hairpins,” i.e., small scale
folds in vortex lines. Indeed, they show that an appropriate
version of the hairpin removal introduced in [9] constitutes
the appropriate modification of the Kosterlitz and Thouless
[22,24] and Shenoy and Williams [34, 37] real-space
rencrmalization to a classical {i.e., non-quantum) fluid in
turbulent motion. We shall explain the theory briefly and
provide a suitable algorithm. The numerical resuits support
the theory.

From a purely algorithmic point of view, the method
described below improves on the hairpin removal of [%]
through the use of vortex filaments rather than unconnected
vortex segments and through the use of constant cores. The
use of filaments requires the introduction of cut-and-paste
algorithms that are of interest in other applications.

* This work was supported in part by the Applied Mathematical
Sciences subprogram of the Office of Energy Research, U.S. Department of
Energy, under Contract DE-ACO03-76SF-00098, and in part by the
National Science Foundation under Grant Number DMS89-19074.

The theory is directly applicable to calcuiations based on
Buttke’s magnetization representation [67]. The algorithms
bear a substantial formal resemblance to Dritschel’s surgery
for contour dynamics in the plane [ 16, 17]. The main prac-
tical differences are related to the fact that vorticity contours
in the plane are much smoother than vortex lines in space
(see below). However, the theoretical justification raises
interesting problems about the statistics of vortex patches.
The algorithms also bear some resemblance to the limiters
of computational gas dynamics.

Finally, the theory makes contact with the justifications
used in other approaches to large-eddy simulation through
the observation that the spectrum of the scales that are
removed has a Kolmogorov form. The implication of these
ideas in a broader context will be discussed.

Qur test problem will be the motion of a circular vortex
ring, with appropriate perturbations.

THE EQUILIBRIUM THEORY OF YORTEX FILAMENTS

Consider a sparse collection of vortex filaments, as is
appropriate for intermittent flow, and assume their lengths
are fixed so that thermal equilibrium can be reached
[&, 10]. It is enough to consider a single filament. Endow
this filament with the appropriate hydrodynamical energy
E=(8n)~" [ dx | dx'§(x) §(x')/|x — x'|, where §(x) is the
vorticity at X, and assign to each configuration C of the
filament a probability P(C) oc exp(—E/T), where T is a
temperature that can be positive or negative. A negative
temperature is “hotter” than a positive temperature, and
|T] =00 is the boundary between positive and negative
temperatures [25].

When 7" <0 the vortex lines are smooth. When T'> 0 vor-
tex filaments collapse into tightly folded structures, and if
reconnection is allowed, they break down into small loops.
At the boundary | T| = o the vortex lines are fractal objects
whose axis has fractal dimension ~ ; the corresponding
spectrum has the Kolmogorov form. The average energy of
a vortex system is an increasing function of T (remembering
that 7 <0 is larger than T>0) and of the length L of the
filament. In the neighborhood of the |T| = oo transition a
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vortex system resembles a vortex system near the superfluid/
normal fluid quantum transition, where a renormalization
procedure is known [12, 13,22].

Now suppose vortex stretching is allowed. Start with
smooth vortex lines (T < 0). Conservation of energy and the
increase in L will force the temperature down, towards
|T| =o0. The |T| = oo threshold is uncrossable for a con-
tinoum Euler system, and that is where such a system will
remain. A viscous fluid or an underresolved numerical
calculation can cross that threshold. This crossing is accom-
panied by a loss of energy, by reconnection, and by a
growth in the fractal dimension of the filaments, and thus by
excess vortex stretching and folding. One consequence is
that energy loss and reconnection appear simuitaneously.
Another consequence is that an inaccurate calculation (by a
vortex method or indeed by any other), by allowing the
crossing of the threshold, will produce too much vorticity
and overpredict singularity formation accompanied by
energy loss. We no longer believe, in particular, in the
reality of the singularity observed in {9].

It goes without saying that in time-dependent problems,
where the initial data are smooth and the large-scale
features of the flow are time-dependent, the equilibrium and
quasi-equilibrium considerations apply only to the small
scales of motion.

RENORMALIZATION

The | T| = oo turbulent state is a critical state, in the sense
of the theory of critical phenomena, and it shares many
properties with a quantum vortex system at the temperature
T. of the superfluid transition. Indeed, in a model
“21-dimensional” system one can draw a curve, in an
appropriate parameter space, that links these transitions
and along which the properties of the system are invariant
[12]. It is reasonable to expect that the renormalization
analysis near the superfluid transition can shed light on the
turbulent state and supgest ways of “renormalizing,” ie.,
simplifying vortex calculations.

In a renormalization, one repeatedly removes small scales
from a calculation in such a way that equilibria or dynamics
are unchanged on much larger scales. Assume that the smali
scales are in approximate thermal equilibrium, and suppose
to begin with that the temperature 7 is finite and positive.
When T>0, a large vortex loop “polarizes” smailer ones,
i.e., the greater likelihood of lower energies in a canonical
distribution with 7> 0 makes it likely that smaller loops are
arranged so as to reduce the energy. The removal of small
scale structures requires a decrease in vortex strength to
make up for it. For T <0, the opposite is true: at or near
equilibrium a large loop “anti-poiarizes” smailer ones, and
renormalization requires the strengthening of remaining
vortex lines. On the |T|= o0 boundary between positive

and negative temperatures one should be able to remove
small scales with impurity and leave the vortex strengths
invariant. The removal of smail scales is the goal of hairpin
removal.

Another parameter that has to be “renormalized” is the
“chemical potential” that is a function of vortex core size
[12]. A similar argument can be made to show that the
vortex core size should remain fixed as well, as has been
discovered by extensive numerical experimentation [31].
This conclusion is somewhat counterintuitive, and the
opposite was assumed in [9], to the detriment of accuracy.

Renormalization keeps invariant an ensemble, and we
wish to keep invariant the large-scaie behavior of a single
flow. The gap between the two can be bridged by noting that
a single flow can-be viewed as a union of subflows, each in
approximate thermal equilibrium with the rest. Thus we
expect that the smali scale loops or foids that are generated
in an inviscid calculation have orientations that are statisti-
cally independent of the large scales. The removal of small
scales 1s not necessanly without penalty, since it is equiva-
lent to a sum of small changes whose average is zero but
which are not zero individually. The resulting collection of
perturbations should have a slightly viscous effect that is
presumably small in comparison with the viscous effect of
underresolved differencing on & grid.

Note that hairpin removal can be justified only if the
calculation is accurate enough to remain near | T| = oo and
not to fold further into the positive T regime.

There is a natural connection between hairpin removal
and other approaches to large eddy simulation, inasmuch as
the removal ieaves invariant the large |T| regime and thus
keeps invariant the Kolmogorov spectrum at high wave
numbers k, even beyond the level of resofution.

RELATION WITH CONTOUR SURGERY IN THE PLANE

The removal of hairpins, which we shall see involves
reconnections of vortex lines, bears at least a philosophical
resemblance to surgery performed on vortex contours in
two-dimensional flow, as presented in [16]. The practical
details are perforce different, as a consequence of the
difference in smoothness between two-dimensional contours
and three-dimensional nearly fractal vortex lines. In [17],
contour surgery is justified on the basis of a cascade
argument that resembles the standard cascade analysis of
the three-dimensional flow.

It would appear that surgery requires the statistical
independence of large scales and small scales, and that in
turn requires the infinite temperature that results from an
ever increasing number of active scales. However, our
present understanding of the statistical mechanics of
two-dimensional flow [18, 28, 32] indicates that in two
dimensions vortex equilibria are large-scale, the small scales



HAIRPIN REMOVAL 3

are asymptotically insignificant, and the temperature
remains constant. One could justify two-dimensional
surgery by one or both of the following arguments:

(1) One could introduce a scale-dependent temperature
and possibly conclude that vorticity contours are controlled
by small scales for which a cascade argument holds, leading
to infinite temperatures on the scales of the surgery, or/and

(ii) one could argue that the dynamics of the small
scales are asymptotically insignificant and thus surgery in
two dimensions is harmless because the mishandling of
small scales is unimportant.

Thus, the statistical analysis of the constructions in
Ref. [16] remains to be carried out.

A VORTEX METHOD FOR EULER’S EQUATIONS

The Euler equations for a fluid of constant density 1 can
be written in the form

dxw ﬁ_ '
=% =@V (1a),(1b)
u=K=g, (1c)

where x is a lagranglan marker moving with the fluid,
u=u{Xx, #) is the velocity, & = curl u is the vorticity, and K is
the operator K= —(4n [x|*) ! xx, where x denotes a
cross product and * denotes convolution; ie., (lc) is a
shorthand for

wx, )=

1 , 1 , ,
_EJAdX lx_—x,|3(x—x )de(x )‘

For a derivation, see, e.g, [14]. Vortex methods are
Lagrangian discretizations of these equations. The variant
proposed here is nearly identical to the one in [7]; the main
difference is the use of higher-order cores and higher-order
time integration. For other examples of vortex methods and
for theory, see, e.g., [1, 3-5, 19, 23, 26].

Approximate the vorticity field £ by a finite collection of
closed vortex loops S,, each with circulation k,, i=1, .., N.
Place #; points x,, X,, .., X,,, on the ith loop. Approximate
the loop S, by the n, segments X, X;, X;X;, X, _X,,. Lets;
be the jth of these segments, s, =x,—x;., j'=j—1if j#1,
j'=mn,if j=1. The use of closed loops guarantees that in an
appropriate sense div§ =0 (the slight ambiguity in this
statement is analyzed in, e.g., [30]; the importance of
satisfying divE=0 is analyzed in [6]). Ensure that the
lengths of the s; satisfy |s,| <A, 4 a predetermined bound.
Note that a reversal in the sign of x; and an appropriate
renumbering of the x; leaves the vorticity in §; invariant; to
avoid this ambiguity, make all the x; positive. For ease of

reconnection (see below) it is convenient to pick all k, equal,
k,=k for all 4.

Let x7" = 3(x;+ x;.) be the center of the jth segment. The
velocity at a point x is the following discrete version of (lc):

u(x, t)= —4—'; i

LA r,l/o), (2)

I °

where the sum is over all segments on all loops, =X —X,
fis a core function chosen so as to enhance accuracy
[5,21], and ¢ is the cutoff length that can serve as a
measure of the thickness of the loops and is constant in time.
a should be larger than the typical distance between
neighboring segments. We shall use the fourth-order core
function f(gq)= (1 —(1—34’)) e~7. The calculated u(x;) is
used to advance x;. The variation in the lengths of the
scgments as a result of the motion of their end-points
automatically satisfies Eq. (1b). The ordinary differential
equations (la) will be solved by a fourth-order
Runge-Kutta method with time step & adjusted so that
k -max|u{x;)| <4, 4 a controllable parameter (see more
below). If the length of a segment exceeds k, the segment is
cut into two, with the coordinates of the new point found by
linear interpolation.

It may seem surprising that while we use fourth-order
integration in time and a fourth-order core, the integration
along filaments (2) and the interpolation just mentioned are
first-order accurate only. Numerical experiment shows that
higher-order integration and higher-order interpolation
along fitaments detract from accuracy, except when a single
filament is used or when the vorticity has not yet stretched.
The reason should probably be sought in the lack of
smoothness of vortex filaments, as discussed above. In addi-
tion, the difference between the result of linear interpolation
for segment splitting and the result of higher-order inter-
polation is a small loop and presumably unimportant when
the vortex is sufficiently stretched. On the other hand, the
usefulness of higher-order time integration and of higher-
order cutoffs is consistent with the smoothness of the
lagrangian flow map [20].

Integrals of motion can be used to provide partial
information about the accuracy of the calculation. The three
components [, /,, I; of the impulse l=jx x & dx can be
approximated by

I=) xVxxs,
and the energy E can be approximated as

ZZ

i Jaét

E;,
SRZ "

where the first term is the interaction energy and the second
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ola)

FIG. 1. Self-energy function ¢.

term is the “self-energy,” which is small when the number of
segments # is large or when the vortex lines are smooth, The
self-energy can be evaluated through the relations [8]

where ¢ is a function of a single variable that depends on the
cutoff function f and which can be evaluated once and for all
for any given f and stored (see [8, 31]). The ¢ we use is
sketched in Fig, 1. Its asymptotic properties for small or
large arguments are independent of / (see [8]) and a change
in f does not change ¢ much. The main remaining source of
error in the approximation of £ above is the fact that the
interaction energy as written is a rough approximation for
nearby segments.

HAIRPIN REMOVAL AND RECONNECTION

We now wish to remove small hairpins in a vortex
calculation; a large vortex with a small hairpin can be
viewed as a smooth vortex with an adjacent small vortex
loop, so that our renormalization argument applies.

———
——
(a) (b)

FIG. 2. Relative configuration of two vortex segments.

x°
i 8= (3,+8,)2
FIG. 3. Distance between segments.

Consider two adjacent segments on the same numerical
vortex loop. Suppose the angle between them is large. The
addition of the two segments will then remove a small hair-
pin. Note that this is different from maintaining the smooth-
ness of the vortex filament at all times (for example, through
a repeated use of spline smoothing) inasmuch as stretching
and folding are allowed and the smoothing appears only
after a substantial amount of folding has occurred and
the temperature thus presumably has decreased to the
neighborhood of infinity.

The angle between the adjacent segments is cos 6=
(s;-s;-)/(|s;] - I1s;-|), where i, i’ are the appropriate indices.
The angle will be viewed as too large when coséf <
{08 6) min» Where (cos 0),,, is a predetermined parameter,
When the angie is too large, the pair is replaced by the sum
and the filament remains connected. This process reduces
the length of vortex lines and is the improved version of the
hairpin removal of Ref. [9].

The parameter (cos 0}, determines the size of the hair-
pins that are removed. The large scale numerical results
should be independent of (cos #),,;, once the latter is small
enough, but the number of segments in the calculation
should decrease as (cos #),,;, is decreased.

One may also wish to remove hairpins that appear when

FIG. 4. Splitting a filament into two.
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nearby counterrotating segments approach each other
without being adjacent on a filament or even without
being on the same filament. To remove them, one should
reconnect the filaments. Such a reconnection is mainly a
bookkeeping operation and is not necessarily accompanied
by a physical vortex reconnection [27]. Presumably, a
numerical description of a physical reconnection would
involve many “bookkeeping” reconnections.

Reconnection occurs when two segments, say with indices
i and j, are such that the angle § between them satisfies
c0s B < (cos 8),,;n, and they are close to each other. To find
such segments, one has to define the distance between
segments. This is not trivial, because a reasonable definition
of distance must take into account not cnly the minimum or
the maximum distance between them, but also their relative
configuration. Thus, in Fig. 2, the two ¢lements in case (a)
are further from each other than the elements in case (b),
even though their minimum distance is smaller.

Consider the segments 7, jin Fig. 3. We shall be interested
in their distance ¢, only if it is small. If |x]" —x7*|, the dis-
tance between their centers, is larger than A, the bound on
segment length, we set &, = [x7" —xJ"|. Otherwise, we define
d; to be the length of the projection of the line of centers on
that normal to segment / that lies in the plane through the
centerline of segment j and the point x" and similarly define
8, to be the length of the projection of the line of centers on
that normal to segment / that lies in the plane through seg-
ment j and x7". We then set &, = 3(8; + 8,). This definition
of é; is the symmetrized version of the one in Ref. [9].

We now define two operations on filaments: splitting a
filament into two, and merging two filaments into one.
Consider a filament as in Fig 4. If two non-adjoining
segments of the filament satisfy the conditions: (i) 8 ; < 6 ,pin,
(ii) cos 0, =(s,-s,)/(ls;! Is;|} < (cos 0),,;, (where (cos 0},
and §_; are predetermined bounds), the filament will be
split into two through the addition of two neighboring
counterrotating segment as shown in the figure. This
splitting does not change the vorticity or velocity fields
in the absence of further manipulations. Similarly, if two
segments belonging to two different filaments satisfy the two
same conditions, their filaments will be reconnected into

FIG. 5. Reconnecting two filaments into one.

FIG. 6. A vortex ring.

one as in Fig. 5. Note that we are not interested in reconnec-
tion if s,, s, point approximately in the same direction. In a
time-dependent calculation, any one filament will not be
allowed to participate in a reconnection more than once per
time step; since the criteria for splitting or reconnecting are
the same, this condition must be enforced by some logical
programming. In general, we pick &,,;, = $h.

A NUMERICAL EXAMPLE: THE MOTION OF
A PERTURBED VORTEX RING

To illustrate the constructions above and show their
usefulness we consider the evolution of a vortex ring with
ring radius R and arm radius p (Fig 6). Initially the ring
is kicked by a localized, smooth, finite amplitude perturba-
tion (Fig. 8a). A study of a ring with small periodic per-
turbations has been carried out in [23]; if the initial
perturbations are small it takes a long time for hairpin
removal to become significant and our methodology has
little to add to the stability analysis in [23].

2000

1000

t ——

FIG. 7. Growth of the number of segments in time: Curve 1 without
hairpin removal; curve 2 with hairpin removal.



6 ALEXANDRE JOEL CHORIN

There is a clear connection between the accuracy of the
underlying algorithm and the number of hairpins that are
removed. According to the theory above, when a calculation
is inaccurate it can slip below the |T|=o0 threshold,
overestimate the amount of stretching and folding, and
create additional hairpins. This relationship is observed in
practice.

We approximate the perturbed ring by ¥ filaments placed

time=1.50

in the arms of the ring in such a way that each is surrounded
by an equal volume. Each filament starts with n, scgments,
so that at 1 =0 there are n= Nn, segments. In addition
to removing hairpins, we remove very small segments
(Is;] < 11_0" ).

In Table I we display the results of a calculation with
N =19, n,=60, p/R=0277. 4, the time stepping parameter
that bounds &k max |u, k = time step, is taken equal to the

FIG. 8. The evolution of a vortex ring: (a) t=0; (b) 1 =0.75; (¢) t=1.50, {d) 1 =2.25.
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smallest distance between segment centers. A is, in fact, the
most sensitive numerical parameter, since it must be small
enough to ensure that the rotation in the arms is accurately
represented [29]. To easec this problem we picked the
relatively large ratio of p to R. The test for hairpin removal
uses (cos #)ymi, =90, ie., hairpin removal occurs if neigh-
boring segments attempt to form a right angle. The cutoff
length ¢ is 2.5 times the largest initial distance between
neighboring segments. The bound on segment length, 4, is 2
of the largest initial segment length. We display the number
of steps, the number » of segments in the calculation at that
step, the cumulative total #n, of segments removed, the time

elapsed, the computed energy, the impulse in the direction
of motion, and the impulse in an orthogonal direction. In
Tabie I1 we display the result of an attempt to carry out the
same calculation without hairpin removal (r, =0). The
integrals of motion are conserved, if anything, better with
than without hairpin removal. Without hairpin removal the
number of segments in the calculation increases very fast
and the calculation must be stopped. With hairpin removal
n begins by declining, as a result of the fact that the initial
segment lengths are smaller than the maximum allowed,
and with the removal of small segments there is room for
expansion. The difference in the values of » as lunctions of

FIG. 9. Evolution of a vortex ring, large time step: (a) 1 =0, (b) =075, (¢) = 1.50, (d)  =2.00.
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TABLEI

Calculation with Hairpin Removal

Step n n, Time  Energy Impulse-x Impulse-y
0 1140 0 00 0.102 0.213 0.0
i00 1110 52 0340 0.101 0.2i2 —0.001
200 942 305 0.670 0.100 0.211 —0.001
300 792 789 0986 0.104 0.212 —0.004
400 738 1113 1.284 0.103 0.207 —0.006
500 730 1457  1.588 0.103 0.206 —0.005
600 692 1822 1903 0.104 0.204 0.001
700 669 2058 2225 0.107 0.208 0.004
800 669 2208  2.551 0.107 0.209 0.014
900 881 2917 3003 0.107 0.212 0.001

the time ¢ is displayed in Fig. 7. Curve (1) (no removal) is
familiar from other vortex calculations [7, 23].

In both runs we start with ¥ =19, n, = 60. The calculated
velocity of the ring is 5% above the value predicted by the
asymptotic formula U = {log(8R/p)—0.25)/4nR + O(p/R),
see [33]. Since p/R is not small here, and the numerical
representation of p is only approximate because it is not
clear how o contributes to it, this is an adequate agreement.
Computer analyses of the convergence of vortex methods in
three space dimensions can be found in Refs. [1, 23]; our
goal here is only to contrast calculations with and without
hairpin removal.

Good conservation properties and a correct evaluation of

a global quantity such as ring velocity do not guarantee -

accuracy, To see what the calculation looks like, we
reproduce in Fig.8 a run with N=31, »,=70,
(cos ), = 0, and other parameters chosen as per the con-
siderations above. In Fig. 8a the ring with the initial bump
is shown. The other figures are at r =0.75, ¢ = 1.50, ¢ = 2.25.
The initial bump resolves itself into waves moving on the
ring. The six cornered configuration, predicted by linear
stability theory [23, 35], by ecarlier calculations [23], and
by the study of model problems [15], can be discerned. The
ring retains its topological integrity for a long time, as
observed in experiments [27,33]. Eventually, vorticity
begins to shoot off into the wake, roughly at the antipode
position from the initial perturbation. The hairpin removal
deletes most of the thin arms that are thus produced; the

TABLE 11

Calculation without Hairpin Removal

Step n Time Energy Impulse-x  Impulse-y
0 1140 0.0 0.102 0213 0.0
50 1161 0.163 0.102 0.213 —0.001
100 1189 0.327 0.101 0.214 —0.003
150 1295 0.485 0.102 0.218 —0.004
200 2401 0.743 0.104 0.229 --0.004

impulse is well conserved. This sequence of events is
plausible to anyone who has watched a smoke ring and is
consistent with the photographs in [36] and also in [33],
when only axisymmetric flows are considered.

To exhibit the shedding of vorticity that is being deleted,
we exhibit in Fig. 9 a calculation with ny =60 and a time
step four times larger than in Fig. 8. The hairpin removal
occurs four times less frequently and is thus less efficient.
The shedding explains the thinning of the visible ring. The
energy and impulse are very accurately preserved in all these
calculations. The increase in energy due to the thinning of
the ring is balanced by the folding of the filaments. The main
obstacle to longer runs is the need for smail time steps. (It
took about 1000 time steps to get to 1 =225 in Fig. 8.) A
time step that is too large detracts from accuracy; its effect
on the number of hairpins present is not large.

Eventually the ring collapses into a complicated tangie;
by that time the accuracy of the calculation, as determined
by comparing runs with different parameter values, is not
high and it is not clear how seriously the details should be
taken. The collapse is not reproduced here.

CONCLUSION

Figure 7, together with Tables I, 11, is our main result.
Without a visible loss of accuracy on the large scales, the
growth in the number of segments and in the complexity of
small scales has been at least partially tamed.

Our procedure removes small scales from a vortex
calculations and is possibly related to the contour surgery of
[16]. The key observation that leads to a justification is that
flow with stretched vorticity lives near an infinite tem-
perature. We work directly with the computer representa-
tion of the solution, and no effort is made to derive auxiliary
“effective” differential equations.

An interesting question that remains open is how to apply
our theory in the context of other numerical methods, for
example, finite difference methods. Underresolution and
numerical viscosity also remove small scales in grid-based
methods, but they do it differently and certainly not
harmlessly. They fatten vortices and thus change the chemi-
cal potential, and they average vorticity independently of its
orientation. The pictures that result are very different from
Fig. 8, where a lot of small-scale structure survives. Clearly,
some ways of removing small-scale structure are more
legitimate than others on a grid and a clear characterization
of what is allowed and what is not would be very helpful.

Note. The program used above is available from the
author.
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